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ABSTRACT

We have developed a classification method of tactile feeling using
a stacked autoencoder-based neural network on haptic primary col-
ors. The haptic primary colors principle is a concept of decompos-
ing the human sensation of tactile feeling into force, vibration, and
temperature. Images were obtained from variation in the frequency
of the time series of the tactile feeling obtained when tracing a sur-
face of an object, features were extracted by employing a stacked
autoencoder using a neural network with two hidden layers, and
supervised learning was conducted. We confirmed that the tactile
feeling for three different surface materials can be classified with
an accuracy of 82.0[%].

Index Terms: I.5.1 [Pattern Recognition]: Models—Neural nets;
H.5.2 [Information Interfaces and Presentation (e.g. HCI)]: User
Interfaces (D.2.2, H.1.2, I.3.6)—Haptic I/O h.5.1 [Human-centered
computing]: Virtual reality;

1 INTRODUCTION

The importance of virtual reality(VR) technology for telexistence
has increased in recent years. If real-time transmission of body
sensations, such as tactile feeling, is developed in addition to au-
diovisual sense, a real-time remote working system will be more
realistic. As an example, a previous study [1, 2] proposes that at the
work input with a VR simulator, presentation of information related
to the tactile feeling of an object, such as force sense, is necessary
for an operation task. Telexistence is similar to a VR simulator in
that they are virtual for a user who operates them; and it is con-
sidered that presentation of tactile information is necessary for ef-
ficient work, even in a remote work system. Several telexistence
systems have been proposed;and a system that can be experienced
in real time has been constructed[3].

For transferring of body sensations, we use the haptic primary
colors principle [4] proposed by Tachi. The principle of haptic pri-
mary colors is based on a combination of tactile feelings obtained
using three types of receptors existing inside the skin to sense force,
vibration, and temperature. This is the same as the principle that an
image can be reconstructed by decomposing it into three primary
colors of red, green, and blue and displaying it.

High fidelity tactile feeling can be presented by transmitting high
quality haptic primary colors data obtained using a high sensitiv-
ity tactile sensor and presenting the transmitted high quality tac-
tile information. To disseminate a tactile presentation device, it is
necessary to be able to present tactile information effectively us-
ing devices that are inexpensive and commonly used. In addition,
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the configuration of the presentation device may vary significantly,
e.g., from single modal to multiple modalities, with only vibration,
with only vibration and temperature, and devices that can provide
vibration, temperature, and force. Therefore, a haptic presentation
equalizer that seasons the tactile information to be presented will be
necessary depending on the performance of the presentation device.
To realize the haptic presentation equalizer, it is necessary to clas-
sify the tactile information consisting of a combination of modali-
ties and generate a haptic feeling that can be presented effectively
with single or multiple modalities. These problems can be solved
if a method can be developed to acquire tactile information as hap-
tic primary colors and classify it. First, we examine methods that
can classify vibration. As the device that presents vibration, which
is acceleration information, is embedded in devices such as game
controllers and smart phones, which are spreading and advancing,
the degree of its contribution to dissemination is high. After de-
veloping classification method for vibration, shear force can be ob-
tained from integration of vibration components using accelerlaion
sensor, and classification using temperature change as a clue is also
possible using a temperature sensor.

2 VIBRATION CLASSIFICATION METHOD USING A NEURAL
NETWORK

For classification of vibration, we employ a machine learning
method that is used in the filed of computer vision. Vibration is a
physical quantity that has a plurality of frequency components and
varies with time. It is considered that fluctuation in the frequency
components occurs per unit time. The fourier transform is used to
obtain the frequency distribution within unit time. An image is gen-
erated using the high intensity part of the frequency distribution as
high luminance and the low intensity part as low luminance, and
classified using machine learning. We adopt a deep neural network
that uses a stacked autoencoder, which is effective for handwrit-
ten number classification [5]. As it is difficult to manually extract
features in a frequency fluctuation image, automatic extraction of
features using the autoencoder is effective.

A neural network that extracts features using a stacked autoen-
coder with two hidden layers is used. High-order features are ex-
tracted using two stages of the autoencoder. To classify the feature
vectors of the second-stage autoencoder layer, the soft max layer is
learned. The soft max layer learns vibration patterns through super-
vised learning using labels of tactile feeling. The abovementioned
three layers constitute a deep neural network for classification.

Meissner’s corpuscles feel vibrations inherent in human skin,
generate vibrations having a resonance frequency of less than
100[Hz] [6] under normal pressure. Therefore, it is necessary to
be able to acquire vibration of approximately 200[Hz] as a request
to the vibration sensor. Meissnner also requires approximately ten
minutes to acclimate to a touch stimulus among receptors, then it
is used for recognition of stimulus that keeps touching. It is neces-
sary to gather vibration data obtained by touching continuously for
the vibration recognition. Even though a method of recognizing a
gesture [7] from the moment of contact with a tool has been pro-
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posed, which primarily focused on vibration from the beginning of
a touch, recognizing of the device of the target object is the most
important, for which acquisition of kHz order vibration is required.

3 PROTOTYPE SYSTEM AND EXPERIMENTS

A device, shown in Figure 1 (a), for automatically collecting the
texture of a material surface was developed. We also developed a
measurement board (Figure 1 (b)) equipped with an 3-axis accel-
eration sensor(LIS3DH) which acquires vibration and an infrared
thermopile sensor(TMP007) which acquires suraface temperature.
Sensor data can be acquired at approximately 100[Hz]. The time
required for collecting the texture is approximately 1.5[s], and the
material is reciprocated while pressing a hollow square-shaped alu-
minum rod loaded with the acceleration sensor with a force of
100[g]. The material is attached on a linearly moving rail to collect
the tactile texture. The rail is moved iteratively in step of 20[cm]
in each direction by the roller of the geared DC motor controlled
by Arduino Uno. The acceleration distribution acquired during one
iteration is converted into one image, which is used for learning.
To produce the acceleration distribution image, the sum of squares
in the three axis directions of x, y, z was used. Images with fre-
quencies distributed at primarily less than 45[Hz] were obtained
through the Fourier transform. The horizontal axis represents ap-
proximately 3[s] showing an iteration of rubbed textures and the
vertical axis represents the frequency distribution. The image reso-
lution was 641×34[pixels]. 350 images obtained from each of the
three material textures were used for learning. We used MATLAB
for learning and classification. Learning was perfoamed using the
scale conjugate gradient method, and the mean square error of L2
sparse regularization was used as the loss function. We measured
the acceleration at the time of tracing for the following three of
materials for 10[minutes]; a board made of Japanese Judas wood,
urethane foam and a Ray skin plate (Figure1(c)∼(e)). The evalu-
ation of classification results was 82.0 [%] as shown in Figure 2.
For evaluation, we used cross-validation image set which used 50
images for each material. The sizes of the first and second autoen-
coders are 1700 and 800 nodes respectively, and the upper limit of
the calculation iteration count for extraction of features is 400.
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Figure 1: (a)Automatic system which records material texture,
(b)Acceleration and infrared thermopile sensor embedded tactile
recording module, (c) Urethane foam, (d) Board of Japanese Judas
wood, (e) Ray skin plate.

The classification result after learning is shown in Figure 2. Ac-
cording to the above results, it is possible to classify tactile feelings
using vibration which acquired from materials surface texture.

From these results, it is thought that a part of the urethane is
classified as an Ray skin. It is because mechanical vibration is gen-
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Figure 2: Classification results of three materials. From the left ure-
thane foam, board of Japanese Judas wood, Ray skin plate.

erated from the recording system. Since the roughness of the sur-
face material are different, it can be thought that it is necessary to
suppress the vibration generated by recording system.

4 CONCLUSION

Based on the haptic primary colors, we constructed a system using a
neural network with a stacked autoencoder to classify the presented
tactile feeling. Characteristics were extracted from 350 images ob-
tained from each of the three material textures using two stacked
autoencoders. Through supervised learning using soft max, pro-
posed system was able to classify the tactile data of vibrations with
an accuracy of 82.0[%]. In the future, we will construct a system
that learns learns shear force and temperature change and force fluc-
tuation data. We will study tactile classification method based on
haptic primary colors for high quality tactile telexistence.
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