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ABSTRACT

The purpose of the study is the development of a tactile dis-
play which can control a spatial pattern of friction on a metal
surface by using ultrasonic elastic waves in a tapered membrane
(2 membrane whose width decreases gradually). It is reported
that a surface of a vibrating object with ultrasonic frequency
feels smooth by air lubrication called squeeze effect. In this pa-
per, we show two properties of elastic waves in the tapered mem-
brane. First, waves can be localized on the surface. Second, the
localized vibrating area can be freely controlled{enlarged or re-
duced) by changing the frequency of the wave. Therefore, by
generating ultrasonic elastic waves in the metal tapered mem-
brane, we can construct a tactile display, where the localized
smooth area can be moved on the metal surface. In an exper-
imental display employing a brass-tapered membrane vibrated
by a Langevin-type ultrasonic vibrator, validity of our method
is confirmed.

INTRODUCTION

Haptic sensation is divided into two parts. One is proprio-
ception, which is a sense of weight, force of resistance, or the
approximate shape of an object. The other is tactile, cutaneous
sensation, which is a sense of roughness, friction, or textures of
an object’s surface. The purpose of this study is to develop a
tactile display that provides a tactile sensation, mainly about
friction in active touch with a finger.

To generate varied tactile sensation, we cannot of course pre-
pare all the real objects. Therefore it is necessary to control a
shape of one object in real time. For controlling the state of the
surface of the object, methods to use elastic waves have been
proposed.

[1] propose a tactile display which controls friction of a metal
plate using ultrasonic vibration. Standing waves of bending
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mode is generated on the metal plate by a Langevin-type ul-
trasonic vibrator. It is reported that the surface of the vibrating
plate with ultrasonic frequency feels smooth by air lubrication
called squeeze effect. Thus, ultrasonic elastic waves are used to
control tactile sensation of friction.

On the other hand, [2] propose to use spatial amplitude mod-
ulated elastic waves. The wavelength and the group velocity of
the envelope of the A.M. wave are freely controlled. Theoreti-
cally, an arbitrary surface shape is generated as the envelope of
the spatial A.M. wave on the surface of an elastic plate. This
changeable shape is used for tactile controlling.

However, the problem with these displays is that the stand-
ing wave or the A.M. wave cannot be localized in the plate.
Therefore, during generating vibration, the surface is smooth
everywhere on the plate.

In this paper, we propose a method for generating a distribu-
tion of waves for producing a more complicated spatial pattern
of friction on a metal surface. We use a tapered membrane, that
is the membrane whose width decreases gradually and continu-
ously. It is shown that the wave in the tapered membrane can
be localized at the wide end of the membrane. The area where
the wave is trapped feels smooth by squeeze effect, and the area
without the wave feels rough because of original metal friction.
Thus, a smooth area and a frictional area can be created si-
multaneously on the metal surface. Furthermore, the boundary
between these two areas is freely and continuously controlled by
changing the frequency of the vibrator. With higher frequency,
the smooth area is eﬁlarged. Therefore, the spatial frictional
state of the surface can be controlled by the frequency of the
vibration.

An overview of this paper is as follows. First, we present an
argument regarding elastic waves in a tapered membrane. This
phenomenon is usually not the focus of detailed argument in
elastic waves theory[3] [4], but is fundamental to our display.



Thus, an amplitude distribution of the elastic waves in the ta-
pered membrane is analyzed at length. We show two advan-
tages of the elastic waves in the tapered membrane for tactile
controlling: 1)localization of waves and 2)controllability of the
localized vibrating area. Using these properties of elastic waves
in the tapered membrane, we propose a display which controls a
spatial pattern of friction on the metal surface. We constructed
an experimental device using a brass-tapered membrane and a
Langevin-type ultrasonic vibrator. In the display, validity of our
method is confirmed.

THEORY

Derivation of a equation of elastic waves in a tapered membrane
A membrane with a variable width according to y = W(z)
is considered.(Figure 1) We call a membrane whose width de-
creases monotonically and gradually *tapered membrane’. The
membrane is tensed, and clamped at the edges; y = W(z).

Figure 1: Tapered membrane

We set the z axis along the direction which the wave pro-
gresses, the y axis for the direction of the width of the membrane,
and the z axis perpendicular to the other axes. T is tension of
the membrane, and p is density of the membrane.

A displacement for the z direction denoted v satisfies the wave
equation and fixed boundary conditions at the edges:
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v=0 at y=+xW(z). (3)

Now, curvilinear coordinates (X,Y’) defined as follows are
introduced:

X
Y

()
(5)

Ty
W(z)'

Then the next lemma is proved (Apendix).

Lemma If Wi(z) << 1, that is, if a changing rate of the
width of the membrane is small enough, (X, Y) is a rectangular
coordinate.—
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In (X,Y) coordinate, the wave equation(1) and the boundary
conditions(3) become

1 &% 3 1 &
VioE = (W W ay—) g (©)
v(X,Y)=0 at Y =41, )]

The boundary conditions (7) are independent of X. In this
way, using (X,Y) coordinates, a problem in the tapered mem-
brane is translated into a problem in the straight membrane.

Considering fixed boundary conditions in (7), a separable so-
lution,

v(X,Y)

= F(X) cos TL )
can be assumed. f(X) represents an amplitude distribution
along the z axis, and this is what we want here. Substituting

this solution into the equation(6), we obtain

+((§)’—(§#X))z) f(X) = o (9

By restoring the variables (X, Y) into (z,y), after all we ob-
tain the amplitude in the tapered membrane as

& f(X)
ax?

viz,y) = f(z) Z—V’ﬁ(’;—) e, (10)
where
dzc(:) 4 ((%)’_ (_21;(1)) )f(x) = 0 (11)

We call the equation(11) the tapered membrane equation.

Relation between the tapered membrane equation
and the Schrédinger equation

Now, we compare the tapered membrane equation (11) with
the Schradinger equation for a stationary state in one dimension
in quantum mechanics:

d? ¢(x) Z;n
227 + h—z(E -V(z))é$(x) = 0. (12)

A probability amplitude ¢ in the Schrodinger equation cor-
responds to the real amplitude f(z) of the membrane in the
tapered membrane equation. The energy of a system E in quan-
tum mechanics corresponds to the energy of the elastic wave
which is proportional to the square of the frequency of the wave.
Then we can introduce an important concept of the potential
energy of the elastic membrane, which corresponds to the poten-
tial V(z) in the Schrédinger equation. The potential for elastic



waves is inversely proportional to the square of the width of the
membrane.

This comparison might seem to be somewhat abrupt, but by
this analogy, it becomes easier to understand a behavioral pat-
tern of elastic waves in the tapered plate. The problem to input
elastic waves from the origin toward the right side with frequency
w is equivalent to a scattering problem in one dimension(Figure
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Figure 2: Analogy between (a)the Schrédinger equation and
(b)the tapered membrane equation. The tapered width
W (z) produces a monotone increasing potential

Localization of the wave

The property of the wave changes drastically at the point
where the energy of the wave is equal to the potential. This
point is called the turning point(Figure 2).

From the origin to the turning point, the local wavenumber

defined as
- - (wm)

is real. Thus, in this area, the wave is sinusoidal.

However, outside the turning point, the energy of the wave is
smaller than the potential. Therefore the wavenumber becomes
imaginary. This means the amplitude of the wave attenuates
exponentially. .

In this way, the wave is localized at the wide end of the mem-
brane, that is, from the origin where the wave is input to the
turning point.

k(z)? (13)

Analytical expression of the amplitude distribution
of the elastic waves in the tapered membrane
Now, the tapered membrane with the width

285

W (z) Wo — dz, (14)

is considered. the potential and the local wavenumber become

V(z) = (——Z(W:— dx))z (15)
K(z) = (%)2-(m—))2. (16)

Then the position of the turning point defined as k?(xo) = 0
is

(17)

From the assumption that W/z) << 1, we expand the
wavenumber (16) around the turning point (17) as a linear func-
tion of z as follows:

dk?
() = K(z0)+ %(z — 20)
= —ka(z — o), (18)
s _ 4w
where k3 = —7, (19)
Then the tapered membrane equation(11) turns into
d2
—%::)- —k3(z —z0)f(z) = O. (20)

This equation has an analytical solution as follows:[3]

flz) =

A% To—z (J% (%ko(z‘o - z)%)+J_§ (%ko(xo - x)%))
(z<z)  (21)

flz) =

A\/m}(% (gko(m - $o)%) (= > 20), (22)

where A is a constant determined by the input.

For example, the amplitude distribution in the brass-tapered
membrane is shown in Figure 3, where p = 8.11[g/cm®], T =
5.12 x 10'° [dyne/cm?), Wy = 3[cm), d = 0.1, f = 19.6[kHz].

From the origin to the turning point, a sinusoidal amplitude
increases monotonically. Then at the turning point, the wave
attenuates exponentially. The wave is localized at 0 < z < xy.

Control of the localized vibrating area
In this section, we show that the vibrating area localized at
the wide end of the };apered membrane can be enlarged or re-
duced by the frequency of the wave. The change of the position
of the turning point in a brass membrane is shown in Figure 5.
We consider this problem with the potential again(Figure 4).
By changing the frequency of the wave, the energy of the wave

changes according to ( . The turning point is a crossing

point of the curve of the potential and the line of the energy.
Thus, the turning point moves from z; to zy when the fre-
quency changes from w; to wy. In this way, the vibrating area
is enlarged by increasing the frequency.
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Figure 3: amplitude distribution in the tapered membrane.
The amplitude is normalized by the amplitude at the origin
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Figure 4: The turning point moves from zp to zy when the
frequency changes from wy, to wy.

The properties of the wave in the tapered membrane
From the above discussion, the wave in the tapered membrane
has the following two properties:

Property 1) The wave is localized from the entrance of the
wave to the turning point.
Property 2) The position of the turning point which is the
boundary of the localized vibrating area can be controlled by
the frequency of the wave.

We propose a tactile display using these properties in the next
section.

Method for tactile controlling

It is reported that a vibrating elastic plate with ultrasonic
frequency feels smooth by air lubrication called squeeze effect
[1). This sensation is obtained by only touching the surface of a
Langevin-type ultrasonic vibrator.

Now, we input an ultrasonic wave into a tapered membrane.
From the property 1) of the wave, the sinusoidal vibration is
localized at the wide end of the membrane. The vibrating area
feels smooth, but the non-vibrating area feels rough by original
friction of the metal. Therefore, smooth and frictional areas
are created simultaneously in the surface. Furthermore, from
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Figure 5: Control of the turning point by the frequency
(a) f=20[kHz], (b) f=40[kHz]
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the property 2), the smooth area can be enlarged or reduced
continuously by changing the frequency of the wave.

In this way, a spatial distribution of friction on the metal
surface can be controlled in real time. This is our method for
tactile controlling by ultrasonic elastic waves in the metal ta-
pered membrane.

EXPERIMENT

Basic experiment

To examine the basic phenomena of elastic waves in the ta-
pered membrane, a basic experiment is conducted first. The
experimental system is shown in Figure 6.

Iron frame
(clamped with vises)

Vibrator

Figure 6: Basic experiment using rubber tapered membrane



To obtain a large amplitude of the wave, we used a rubber-
membrane and a voice coil with auditory frequency. The thick-
ness of the membrane is 0.02[mm], and the width is 100[mm].
The rubber-membrane is clamped by the tapered iron plate, thus
creating fixed boundary conditions.

For measurement of vibrations, a laser displacement meter
(Keyence LC-2440) is used.

A spatio-temporal distribution of the amplitude of the wave is
shown in Figure 7(a). The graph is drawn when the frequency is
30[Hz). The z axis is the position in the membrane, ¢ axis is the
temporal axis for one cycle (1/30[sec]), the vertical axis is the
amplitude of the wave. There is a boundary at about z = 15. In
the region, 0 < x < 15, the temporal wave is sinusoidal (Figure
7(b)). On the contrary, in the region, z > 15, the membrane
does not vibrate for all the time (Figure 7(c)). This shows that
the turning point surely exists at about z = 15.
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Figure 7: Experimental result 1: (a) Distribution of the
spatio-temporal displacement in the tapered membrane. (b)
Displacement at 2 = 5 (c¢) Displacement at z = 18 In the
region, x > 15, the wave attenuates for all the time.

In Figure 8, it is shown that the position of the turning point
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is changed by the frequency. Figure (a) shows the distribution of
the amplitude in 30[Hz], and Figure (b) shows that in 40[Hz]. As
the theory shows, the wave with higher frequency reaches further
from origin. The position of the turning point is controlled by
the frequency.
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Figure 8: Experimental result 2: Maximum value of the
amplitude at each point in the rubber-tapered membrane

(a)f =30[Hz], (b)f =40[Hz]

A tactile display of brass-tapered membrane

Based on the basic experiment, we construct a display
of brass-tapered membrane vibrated with ultrasonic frequency
(Figure 9).

As a vibrator, a bolt-clamped Langevin-type ultrasonic vi-
brator (NTK D4520PC) is used. The resonant frequency is
19.6[kHz]. The thickness of the membrane is 0.05[mm]. The
tapered iron frames are clamped by vises.

Without inputting waves, we feel friction of the brass every-
where on the surface. We sometimes feel a stick-slip force.

With generating the ultrasonic vibration, the friction around
the wide end of the membrane becomes lower obviously, though
the surface around the narrow end of the membrane remains
frictional. This shows that the turning point where the wave
attenuates also exists in the brass-membrane. From the origin
to the turning point, the surface feels smooth by squeeze effect.
From the turning point to the narrow end of the membrane, the
surface feels rough.



- Turning point:

Figure 9: A tactile display using a brass tapered membrane

The positon of the turning point can be also controlled in the
brass-membrane. The smooth area is enlarged by changing the
frequency of the vibration.

FUTURE WORK

In this paper, we have mainly discussed about controlling
the smooth area. The vibrating area was regarded as a smooth
surface.

Squeeze force that provides the smoothness depends on an
amplitude of the vibration[5]. Thus, if a distribution of squeeze
force can be created, a more complicated distribution of friction
can be generated.

Here, waves in the tapered membrane has the following re-
markable property for tactile controlling besides two properties
mentioned in this paper.

Property 3) Several waves with several frequencies are super-
posed in the linear elastic membrane. —

A position of a peak of an amplitude is determined by the
frequency. Thus, when the membrane is vibrated with several
frequencies simultaneously, several peaks are formed on the sur-
face of the membrane. For an example, we show an distribution
of the amplitude with 8[kHz](Figure 10(a)), 45[kHz] (Figure (b)),
8[kHz] and 45[kHz] simultaneously(Figure (c)). There are sev-
eral peaks in the membrane. This means we can create the dis-
tribution of squeeze force. We will examine whether or not the
distribution of squeeze force in finger pad affects tactile sensation
in the near future.
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Appendix : A proof of the lemma
(2X 02X, oY oY
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Thus, (X, Y) is a rectangular coordinate.





