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Abstract—Thls research is concerned with impedance control of a mampulator which carries out stable
contact tasks. The method controls the dynamic interaction between a robot and its environment by
changing the apparent mechanical impedance of the manipulator. Conventional impedance control
methods required force or torque sensors, which made the manipulator system very complex.

In this paper a new method is proposed for controlling the impedance of a manipulator without using
force or torque sensors. The angular velocity and angular acceleration of the manipulator joints are
estimated, and by using a cbmputer model of the manipulator, the necessary torque for each joint is
calculated and applied to the joint to attain the desired impedance. The feasibility of the method is
verified by surface-following experiments and collision experiments using a two-degree-of-freedom
direct-drive manipulator.

1. INTRODUCTION

The importance of using information not only of the position, but also of the force
when controlling a manipulator to do a contact task has been discussed for a long
time and many methods have been proposed and compared {1]. One typical
method of force control is hybrid position/force control [2], but it retains many
problems: selecting the position and the direction of controlling the position/force,
sensing the boundary of an object, and switching the position/force mode in actual
handling tasks.

Another typical method is impedance control. This is a control method based on
the dynamic interaction between a robot and its environment; it is particularly
effective in realizing stable force control in contact tasks. When a robot performs
a contact task using this control, the relationship between the robot and its
environment is regulated by impedance. Changes in the dynamic interaction
between the robot and its environment are effected by changing the impedance.
These appear as definitive changes in the apparent dynamics (inertia, viscosity, and
stiffness) of the robot.

Impedance control is a generalized method (1] of stiffness control ([3],
compliance control [4], and damping control [5,6]. Stiffness control and
compliance control are similar to impedance control, but they deal only with static
contact forces. Damping control, which is an expanded method of compliance
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control, deals with a velocity effect but it does not imply a moment term.
Otherwise, impedance control which changes a dynamic impedance is characterized
by changing not only the stiffness and the viscosity, but also the apparent inertia
of the end-effector. ,

This control method was systematized by Hogan [7], and was verified as being
particularly effective when applied to contact tasks on highly rigid objects [8]. In
addition, An and Hollerbach [9] have researched dynamic stability during force
control. However, since previous impedance control methods use either force or
torque sensors, the number of parts required in the manipulator is increased and
the construction becomes very complex; then production cost is raised and the
stiffness of the manipulator is reduced. Also, even if it has a force sensor, the
external force of the parts of the tip of the manipulator can be measured, but the
external force cannot be sensed on the other part of the tip of the manipulator.

Several methods for external force detection using no force sensors have been
constructed by using only internal sensors. Inoue [10] and Kurono [11] proposed
the position differential of a servo system for force detection. Uchiyama [12]
applied his control method to a dynamic compensation method, and Arai and Tachi
[13] developed an active power assistance method by using internal feedback.
However, they did not make use of impedance.

This research proposes a new impedance control method using no force sensors.
In this method, the angular velocity and angular acceleration of the manipulator
joints are estimated, and by using a computer model of the manipulator, the torque
necessary for each joint is calculated and applied to the joint in order to attain the
desired impedance. An experimental 2-DOF (degree-of-freedom) DD (direct-drive)
manipulator with vertical multiple articulation was constructed to test the
effectiveness of this method. The feasibility of the method was demonstrated by
surface-following experiments using the experimental hardware. In this method, the
construction of manipulator is simplified by using no force sensors; the stiffness of
the arm links is kept high; and the impedance can be controlled with external force
on any parts of a manipulator.

2. IMPEDANCE CONTROL WITHOUT USING FORCE SENSORS
The manipulator’s equation of motion is defined as follows:
1§+ D+ C@0,0)=Ta+ J'F., 1)

where [ is the inertia matrix; D, is the matrix of the viscous friction coefficients;
and C(B,é) is the gravity, Coulomb friction, and other non-linear terms.

The above coefficients can be easily identified for a DD manipulator. We will
further define the notation as follows:

T, : actuator output torque vector

F. :vector of external force from the environment
6 :rotational angular vector of each axis

J :Jacobian matrix

JT:transposed Jacobian matrix.

Next we will establish the target impedance Z(jw) (multidirectional impedance
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of the target position and posture Xo of the end-effector) when contacting the
environment. Here the impedance is defined using the analogy of voltage-force.

Z(jw) = B + j(Mw — K|w). ()

The equation of motion for the system having a desired target impedance is
expressed as follows:
Fe=MX + BX + K(X - Xo), 3)

where M is the virtual inertia matrix, B is the virtual viscous friction matrix, K is
the virtual stiffness matrix, X is the position and posture vector in Cartesian space,
Xo = Xo(t) is the virtual equilibrium point which shows the trajectory including

. target position and posture as a function of ¢.

Here, 0 and X have the following relationship due to coordinate transformation:

X=L®) 4)
X =Jb Q)
X =Jb + Jb. (6)

Substituting equations (4), (5), and (6) into equation (3), we obtain the following
equation:
J Fe= J"MJ§ + J*MJ + J*BJY + J'K(L®) — Xo). (7

The output torque of actuator T, needed to achieve the target impedance is
calculated as follows:

Toa=(I—J*MI)§ + (D, — J*MJ — J'BJ)6 + J'K(Xo — L(6)) + C(0,6). (8)

If the manipulator’s various coefficients have been identified, and if the motor’s
rotational angle, angular velocity, and angular acceleration can be measured from
the sensors of the manipulator, equation (8) can be solved and the target impedance
of equation (2) can be achieved.

Figure 1 shows a block diagram of the control system. In this diagram the term
C(8,0) is not shown.

If the trajectory Xo—position and posture—is a time function, the following
method is used.

_Am_
Fe + Ta .
JT @ IS (Is+0v)’” Il
+
L
[ —JTmJ | i |0

T ;

JK] p,~JMJ-JT8Y

s M

X, +7 -

Figure 1. Block diagram of proposed impedance control.
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When the commanded motion is Xo, X, Xo, the dynamics of the system is
changed by the feedback as follows:

F.+ F=MX+ BX, 9)

where F. is the external force; F is the force actuator torque transformed into a
Cartesian coordinate system; and M, B are the target dynamics.

Then controlling the actuator torque, the following force is applied to the
manipulator:

F=MXo+ BXo+ K(Xo - X). (10)

With a given external force, the manipulator behaves with a target impedance at
any time of motion as follows:

Fe=M(X~X‘0)+B(X—X§)+K(X—Xo). (11)

Then the output actuator torque to realize the desired system is determined as
follows:

Ta=(I—J"MJ)§ + (D, — J*MJ — J'BJ)d

+ J"MXy + JTBXo + JTK(Xo— L(8)) + C(8, 6). (12)

The block diagram is shown in Fig. 2. The term C(6,8) is omitted in it.
Impedance control has so far been concerned with a contact task. Now a
manipulator moving in free space is discussed.
The system dynamics is shown again as follows:

F.+ F=MX+ BX. (13)

The trajectory is set as Xo, Xo, Xo, and the control law is
F=MXo + BXo + K(Xo — X). (14)
The whole system dynamics is shown as follows:
F. = M(X - Xo) + B(X — Xo) + K(X — Xo). (15)
E-e———" JT +® s(s+Dy" 1 1
+ S S
5 JTm 7 B
: ]
AT JTB f—JTMy 6 9
JTK

o,~JMJ-JTBU

% c,/ L

+ —_
Figure 2. Block diagram of impedance control for desired general motion.
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The external force is zero when the manipulator moves in free space:

; F.=0. (16)
Then the system moves as follows:
é+M'Be+ M 'Ke=0, an
where
e=X— Xo. (18)

In general, the error e is a six-dimensional vector:

€1
e=1|:1. (19)
€e

The error e converges stably and rapidly to zero under the following (critical
damping) conditions:

(M~ 'B)2=4M"'K (20)
|sI+M‘lB/2| = (1)

If the real parts of the root s of the characterlstlc equatlon are set to be negative
with absolute values sufficiently large and the target 1mpedance is determined to
satisfy the upper conditions, the error converges stably and rapidly to zero and
stable trajectory control is realized. Then the control is the same as the conventional
feedback/feedforward control [14, 15] Also the target impedance can be changed
under these conditions.

3. MANIPULATOR STRUCTURE '

3.1. Hardware

Figure 3 is a general view of the ‘experimental manipulator, and Fig. 4 shows its
structure. This manipulator is a 3-DOF vertically articulated manipulator.

The actuators are direct-drive motors which are suitable for force control and the
estimation of a model of the manlpulator [16 17]. At each axis a DC torque motor
(Inland Co.) is used. The spec1ﬁcat10ns are llsted in Table 1.

The entire linkage is made of duralumm Table 2 lists the weight and dimensions
of each link. S

In experiment 4.2, the first axis was ﬁxed and it was used as a 2-DOF
manipulator. g :

3.2. Control system and program

Figure 5 is a schematic diagram of the control system. The signal from the rotary
encoder of each axis is fed into a computer. After computing the rotational angle,
angular velocity, and angular acceleration, the proper gains shown in equation (8)

3
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are multiplied, and the necessary motor torque is estimated and then output to the
servo amplifier. Current control takes place at the servo amplifier.

A 8000 p/r rotary encoder is used at each axis. To control the manipulator
according to equation (8), an accurate value must be measured or estimated for the
angular velocity and acceleration. However, when trying to find these through the
differential in pulse number, the accuracy becomes very poor owing to the small
effective number at low angular velocity. In this control system, the pulse interval
is measured at 1 MHz on a standard clock, and the reciprocal number is taken as
the angular velocity [18].

The angular acceleration is estimated by using a derivative with a four-point
differential algorithm from the angular velocity and through a low-pass filter.

The programming language C is used, and the control period is 2.0 ms.

3.3. Derivation of the equation of motion and identification of control
parameters

It is not easy to construct a model of a general manipulator with gears because of
its friction. Therefore very complex methods are used to estimate the compensatory

Figure 3. DD manipulator.
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Figure 4. Configuration of the manipulator.
Table1.
Specifications of DD motors
Joint Peak torque Speed (load =0) Weight
(kg cm) (rpm) (kg)
! 41.5 580 1.09
(QT-2404A) ’ ’
2
(QT-6202) 15.2 210 2.81
3 ‘
(QT-1406) 11.3 ' 2989 0.34

Table 2.
Specification of the links of the manipulator

Length (m) Weight (kg)
Link L, 0.135 4.58
Link L, 0.32 4.321

Link L3 0.125 0.473

189



190 Susumu Tachi et al.

Computer 80386 + 80387 (16MHz)
:::::::::i;> Calculation of | Calculation D/A |
6.0, 8 of Ta
X2

u/b 1

Counter \/

X2 Rotary Mot <___: Servo

encoder otor Amp.
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] measurement board 8000 P/R.
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Figure 5. Control system of the manipulator.

value of its friction and interaction term. Onishi et al. [19] used an observer to
compensate for the external force. In this paper, making use of the DD
manipulator’s torque, a simple method of modelling is available as follows.

The Lagrange method is used to derive the equation of motion for the
manipulator (see Appendix 1). »

A DD manipulator which has no friction or backlash is a system where ideally
stiff bodies are linked freely at each joint. Therefore, if the equation of motion is
expressed as in equation (A8), in order to identify its parameters, each axis is taken
as the pivot of a pendulum and damped oscillation is performed separately on each
link. From the experiment, the moment of inertia /, the viscous friction coefficient
D,, and the Coulomb friction C; are derived.

The equation of motion for a rigid pendulum is expressed in the following
equation:

i+ D+ Cy=Ta— Mg sin 0. (22)

Natural damping of the pendulum (7, = 0) without driving the motors is often
used when estimating the parameters by linear approximation of equation (22) on
the assumption that 6 is a minute angle and sin § = 0. However, it is actually rather
difficult to perform oscillation with a minute angle of #; and actual viscous friction
must be measured while driving the motors. Therefore, this natural damping of the
pendulum is not used, and the parameters are identified by the following method.

First, the virtual spring coefficient K is introduced; the motor torque is applied
as follows:

T.= Mg sin 6 — K9. (23)

With this method, equation (22) is linearized by equation (23), and each parameter
can be calculated accurately.

I6 + Db+ C, = — K9. (24)
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Table 3.
Estimated parameters of the equation of motion

Joint Inertia Viscous damping Coulomb friction
(kgm ?) coefficient (N m/ (rad/s)) (Nm)
1 0.72 0.0022 0.1057
2 0.1871 0.057 0.4998
3 0.0351 0.001 0.0031

The parameter identification method is given in Appendix 2. Table 3 lists the
parameters identified for each axis.

To operate this manipulator within the vertical plane, gravitational compensation
~was also performed.

4. CONTROL EXPERIMENTS

4.1. Control experiment with a one-degree-of-freedom manipulator

Using the parameters for the equation of motion of each axis found in Section 3.3,

impedance control was performed on each link. The purpose of this experiment was

to confirm that control was achieved according to the target impedance for each

link, and to verify that the parameters for each axis were correctly identified.
The equation of motion of the system is

6+DA+CO,0)=T.+J'F., (25)
and the desired target impedance is
Z(jw) =B+ j(Mw — K|w). (26)

The desired equation of motion of a system with external force F. and virtual
equilibrium angle 6o is

JYF. = M+ BY + K6 — 6o). 7)
The output torque 7, for the actuator to attain the target impedance is
Ta=(I—M)i+ (D, — B)§ + K6 — 0) + C(, 6). (28)

Note that the coefficients given in (25)—(28) are scalar values.

There are two methods for assigning the desired target impedance (see Appendix
3). Here, however, the apparent interia ratio ¢ for the actual inertia, natural
frequency f;, and damping ratio { is set. The experimental values are those when
step input is applied and the theoretical values are compared.

In this experiment control was performed using only link 2 as a 1-DOF
manipulator with link 3 removed and axis 1 fixed. To assign the target impedance,
the following parameters were set:

¢=T70%, fi=2.0Hz, ¢=0.1, control period =3 ms;
¢ =50%, f,=2.0Hz, ¢=0.1, control period = 3 ms.
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Figure 6 shows the results of the experiment. The solid line indicates the
theoretical value, and the dotted line the experimental value. The double-dashed
line shows the natural oscillation (f; = 0.781 Hz, ¢ = 0.028) without control.

Even with 50% compensation for the inertia and a sampling period sufficiently
short (3 ms), a response virtually identical to the desired impedance was achieved.
This result confirmed the fact that proper identification of the parameters for axis
2 had been obtained.

The same results were also obtained when links 1 and 3 were controlled.

4.2. Control experiment with a two degree-of-freedom manipulator

Impedance control was next performed with a 2-DOF manipulator. The method for
calculating the required torque for impedance control is given in Appendix 4. The
_ following five control experiments were carried out:

(1) The compliance of the target impedance for the horizontal and vertical
orientations was assigned, and the manipulator was made stationary at a virtual
equilibrium point.
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Figure 6. Experimental results of the impedance control for link 2.
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The reaction force to the manipulator along the horizontal and vertical
orientations is shown in Fig. 7. The graph shows the position deviations and
reaction forces for the horizontal and vertical orientations, respectively.

The coefficient for each orientation was set as follows:

K, =35.0 N/m: spring coefficient for the horizontal orientation
> =35.0 N/m: spring coefficient for the vertical orientation

As can be seen from the figure, the reaction force created is proportional to the
positional deviation from the virtual equilibrium point. In this case, the impedance
control can be regarded as compliance control. \

(2) The target impedances for the horizontal and vertical orientation were set,
and damped oscillation was performed at a given virtual equilibrium point.

The assigned impedance parameters for each orientation were

-(1) f.,=1.0Hz, ¢, =0.1;
" Jr,.=1.0Hz, {;=0.1;
@) fr,=1.0Hz, {=0.1;
Jr..=2.0Hz, ¢, =0.1;

AXIS Y K=35(N/m)

0.2(m)
position m
-0.2(m), . s . . .
0.00 5.00(s)
3.5(N)
force
'3.5 [N] - 1 I 1 1
0.00. 5.00(s)
AXIS Z K=35{N/m)
:0.2(m)
position M
-0.2(m) . x : + .
0.00 5.00(s)
3.5(N)
force
-35(N) . , , R .
0.00 5.00(s)

Figure 7. Experimental results of compliance control for horizontal and vertical orientations.

]
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Note that the ¢, =20%, ¢,=75% (total weight 4.727 kg), and the vertical
equilibrium point is set at the position (0.125 m, —0.42 m).

The pendulum oscillations along the horizontal and vertical orientations are
shown in Fig. 8. The solid line indicates the experimental values; the dotted line the
theoretical values. From this result it can be seen that damped oscillation took place
almost exactly according to the impedance assigned for each orientation.

The manipulator may oscillate when the assigned target impedance is beyond the
limits of real actuator torque. Accordingly, it is necessary to determine whether or
not the actuator can actually achieve the target impedance before actual control is
performed (Appendix 5).

(3) The target impedances were set for each horizontal and vertical orientation,
and the manipulator was moved along a horizontal surface while maintaining
contact on the surface.

The assigned target impedances for each orientation were as follows:

Natural frequency: f;, = 1.0 Hz;
Jr.=1.0 Hz.
Damping ratio: ¢, =0.5;
¢z=0.5.
Ratio of the virtual mass of inertia: ¢, = 10%;
b= 5%.

0.1(m)

Y position

fr=1.0(Hz)
¢=0.1

- 0.1(m)

000 5.00(s)

0.05(m)

Z position

fr=1.0(Hz)
¢=01

-0.05(m)

-0.00 5.00(s)

0.1(m)

Y position

fr=1.0{Hz)
¢=0.1

-0.1{m)

0.0 ' ' 5.00(s)

0.05(m)

Z position
fr=20 (Hz)

- 0.05(m3}

0.00 5.00(s}
Figure 8. Experimental results of impedance control for horizontal and vertical orientations.
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The working forces for the horizontal and vertical orientations as a function of
time are shown in Fig. 9. The virtual equilibrium point is set just below the surface,
and it is moved along the surface while maintaining a fixed distance from the
surface. The manipulator exerts a fixed amount of vertical force on the surface and
it follows the surface as it tries to follow the virtual equilibrium point.

(4) The manipulator avoids obstacles during the contact task. The same target
impedances as those used in (3) were set, and the same operation was performed.
The same straight line was set as a virtual trajectory. When a semicircular obstacle
was placed on the surface, the manipulator followed the surface without changing
the virtual trajectory. A force proportional to the positional variation from the
virtual equilibrium point was applied to the obstacle, and it continued with its
operation. The force applied to each orientation during the surface-following is
shown in Fig. 10.

These graphs reveal that the value of the vertical orientation force along the time
" axis, does not have a semicircular shape. This is because when the manipulator
moves over a curved surface, a constant force is required along the tangent of
the surface. Accordingly, when passing over the first half of the obstacle, the
manipulator waits until the position differential from the virtual equilibrium point

1.6(N)

Y force //“—_\'N

~ 16N} : . L .
0.00 10.00(s)
0 4(N)
Z force
-0.4(N) R . . R
0.00 10.00(s)

Figure 9. Experimental results of the working forces of impedance control on a flat surface.

1.5(N)
Y force ///’\,
- 18(N) _— . . .
0.00 10.00(s)
0.4(N)
Z force
-0.4(N)

0.00 ‘ I 10.00(s)

Figure 10. Experimental results of the working forces of impedance control on a semicircular obstacle.
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has attained a sufficient amount of force along the tangent. When passing over the
second half of the obstacle, the reverse of this occurs. If the mapping between the
data with time and the contact surface is determined as follows, the actual contact
surface can be reproduced.

The virtual equilibrium point is moved with velocity V,(¢) applied to the
horizontal orientation (axis Y). The velocity V;(¢) is applied to the vertical
orientation (axis Z), and the manipulator is moved at the composite speed. The
relationship of the position differential between the virtual equilibrium point and
the position of the end-effector, and the force to the environment (F,, F;) is
expressed as follows:

Fy (1) = K, 8,(¢) (2%a)
Fr(t) = Kz 5:(1) (25b)

- where Fy(t), F,(t) are the forces for the Y, Z orientations; K,, K, are the spring

coefficients for the Y, Z orientations; and 8, (¢), 6,(f) are the positional differential

between the end-effector and the virtual equilibrium point for the Y, Z orientations.
The end-effector position is expressed as

Y0 =\ v©d-FOIK (30a)
2(t) = g;Vz(t) dt — F,(0)|Ks. (30b)
In the previous experiment, since V,(¢) = V, V() =0, |
»(t) = Vi- B[ (31a)
2(t) = — F(t)/K. (31b)

Using the relationship in equation (31), the shape of the actual environment
based on the experimental results was estimated. Figure 11 shows the result and the
actual shape of the surface. It is shown that this method permits an accurate
estimation of the shape of the environment.

It has been demonstrated that the manipulator can perform stable contact tasks
while maintaining a desired target impedance.

(5) Transient response in a contact task was observed.

-0.15(m) 0(m) 0.15(m)
-0.35(m)
Actual endpoint path
e I Object surface
-0.45(m] Virtual endpoint path

Figure 11. Surface following path of impedance control on an object.
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While a static contact task is controlled in compliance control, dynamic
interaction is controlled by changing the apparent inertia m in impedance control.
Therefore, in impedance control, the impact of an object is reduced by changing
the momentum v with the same velocity v. For example, if the apparent inertia
m is set small as a low impedance, the danger of destroying a manipulator or an
object is reduced when the manipulator collides with the unexpected object at a
high velocity. This method is possible because the trajectory-controlled manipulator
moves in free space with low impedance.

Now the effect of the impact with a manipulator of reduced apparent inertia is
verified in the next experiment.

The end-effector collided with a pendulum as an object with momentum muv, with
apparent inertia m and constant velocity v (see Fig. 12). Then the motion of the
pendulum was observed to estimate the practical inertia of the manipulator. But to
prevent the destruction of the manipulator and to guarantee the regulation of the
impedance, tennis balls were put on the pendulum.

The case where the apparent inertia was reduced with the acceleration
signal—low impedance—was compared with the case where the inertia was not
changed because the acceleration signal was not used. The pendulum oscillated in
response to the momentum produced by the manipulator. The experimental result
in Fig. 13 shows the dynamic effect of a reduced impedance, that the impact of a
low impedance is smaller than that of a high one.

Figure 12, Experimental system for measuring transient response of collision.
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/2
| With compensation for inertia
0.00 . . Lo
Without compensation for inertia
-7/ 2 ) 1 ’ !

o

0.00 5.00s
Figure 13. Experimental results of the dynamic effect of a reduced impedance.

5. CONCLUSION AND FUTURE TOPICS

Impedance control is a control method whose central concept is the dynamic
interaction between a robot and its environment. In particular, it makes possible
stable force control during contact tasks.

In this research no force sensors were used. Instead, a computer model of
the manipulator and the measured angular velocity were exploited, and the
effectiveness of the method was verified using a 2-DOF DD manipulator. This
method has the advantage that the motion of the manipulator is controlled with the
same impedance when it moves from a trajectory in free space to a contact task.

However, these contact tasks were performed on very rigid objects. When used
for general contact tasks, the following problems remain. The dynamics (inertia,
viscosity, stiffness) of the object being touched, and what place it will occupy are
not usually known in advance. In that case, it will be difficult to perform stable
contact tasks just by controlling the manipulator.

However, the central concept of impedance control was not just to control the
manipulator, but to control a combination of the manipulator and its environment.
In this way, general contact tasks should be considered. For example, if the
environment is unknown, the dynamics of the environment must first be identified.
The method proposed here could be applied to this ‘manipulator plus environment’
control. '

The next step is to expand the control method to a 3-DOF manipulator, to
identify an unknown environment with the manipulator, and to control both the
manipulator and the environment impedance.
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APPENDIX: 1. EQUATION OF MOTION FOR THE TWO-DEGREE-OF-FREEDOM
MANIPULATOR '

The Lagrange equation of motion was applied to the 2 DOF manipulator shown in
Fig. Al.
Kinetic energy:

I=(1/2)J026% + (M3[2) [{d(L; sin 6;)] dB* + {d(— 2 cos 62)[ds}?]
+ (1/2) Je303 + (Ms[2)[ { d(L> sin 6 + /5 sin 63)/ df}?
+ {d(L cos 82 + I3 cos 63) df} 2. (A1)

Potential energy:

U= Mygh(1 — cos 6;)
+ Msg[(Ly + I3) — (La cos 62 + I3 cos 63)]. (A2)
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Mi : mass of link’ i
JOi : moment of inertia of link i about joint i
JGi . moment of inertia of link i about Lhe center of gravity of

link i

2 . : length between joint i and the center of gravety of link i

L. { tength of link i

Figure Al. Dynamic model of a two d.o.f. manipulator.

Dissipation energy:

D = (1/2)D,63 + (1/2)D3 (6 — 62)*. (A3)
Lagrange equation of motion: '
d(o1f aé,-)/ ds — a1 36; + aUJ 36 + aD| ;i =Ta; (i=2,3). (Ad)

The manipulator’s equation of motion is as follows:

[ J02+M3L% M3L7_[3 COS(02—03) 9.2
M;sLyl; cos(6 — 63) Jos 63

+ [Dz + D3 —Ds] [02] _ [Ta,z —Ta3— Tc,l:l (AS)

—Ds D; ||6s Ta3—Tc2
where
Ten= MsLyls sin(@, — 03)83 + (Mzl, + M3 L;)g sin 6, (A6)
Tea= — MsLyls sin(@, — 03)83 + Mslsg sin 6s. (A7)

This is employed as follows:

16+DO=T,-T. (A8)
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where

Ta 2 Ta 3+ Tc 1
Ta — » , Tc — s s .
[Ta,3:| [ Tc,2 ]

APPENDIX 2: IDENTIFICATION OF THE DYNAMICS OF A RIGID PENDULUM

As we discussed in Section 3.3, the equation of motion of a rigid pendulum is
I6+DH+Ci=—Kb. (A9)

By measuring the amplitude and period of the step response with spring
coefﬁcient K, the damping ratio {, the natural frequency f; and the Coulomb
friction coefficient C; are calculated. This calculation uses the following equations:

Xie = Xi+1 explnifJ1 = £ + 241 + expl ¢/l — £7), (A10)

where Xy, Xr+1 (k= 1,2,...)is the double amplitude and A is the spring deflection
caused by the Coulomb friction.

The following relationships are used when calculating the desired parameters
I, Dy, and C..

¢=D,QJKI)  damping ratio (Alla)
fi=(1/27) (JIFI ) natural frequency (Allb)
A=CJK (Allc)

APPENDIX 3: ASSIGNMENT OF THE TARGET IMPEDANCE

The equation of motion for a system having the desired target impedance is given
as follows:

Fo=M0 + Bf + K(® - 0o). (A12)
The following two methods are used when assigning the target impedance:

(1) Direct assignment of M, B, K.
(2) Assigning the natural frequency f;, the damping ratio ¢, and the inertia ratio
¢ for the apparent inertia as opposed to the actual intertia.

That is,

M = I(¢/100) (Al3a)
K = Qnf.)*M (A13b)
B =2¢[KM. (A13c)

If coefficients M, B, and K—derived from either (1) or (2)—are substituted into
the following equation, we can derive the required actuator output torque needed
to obtain the target impedance for the system shown in (A9).

- Ta=I—M)i+ (Dy— B)) + K0 — 0) + C(©,0). (Al14)

]
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APPENDIX 4: DRIVE TORQUE DURING IMPEDANCE CONTROL

The following equation is the manipulator’s equation of motion when the external
force F. is applied:

®+DO=T,—T.+JF.. (A15)

The equation of motion for the system having the desired target impedance of
equation (2) opposed to external force F. is

F.=MX + BX + K(X — Xo). (A16)

If the actuator output torque is established in the following way, control can be
performed according to the impedance given in equation (2).

Ta=(I—-J"MNO + (D - J"MJ - J"BIO + J'K(Xo —L(©)) + Te. (Al7)

The desired target impedance parameters were set as follows:

m, O b, 0 ky 0 Yo
M=1"7? , B=|" , K=\ , = . Al8
O R S FR e A PR (L
The outputs for each of the actuators of the manipulator in Appendix 1 are
calculated as follows:

Taz = [Joz + M5L% — L3(C3my + S5M;)16; i
+ [M3l3L2Ca3 — L2 L3(C2C3my + $283m2)] 03
+ [D2+ D3 — L3(C3by + S3b2)162
+ [ —Ds—1,1;4 (C2C3by + SzS3bz)] 83
+ [LzCZky(yo — 1,8, — L3S3) + LzSzkz(Zo + L,Co + L3Cs )]
- Ta,3 + Tc,,l (A19)

Ta3= [M35L2C3 — Ly L3(C2Cimy + $28:3m;)] 02
+ [Jos = L3(C3my + S3m.)1 03 )
+[—-D;—1;L; (CzC3by + '5253bz)] 02
+ [D3 — L3(C3by + 8§3b,)165
+ [L3Csky (yo — L2S2 — L3S3) 4+ L3S3kz(zo + L2Cs + L3C3)]
+ T2 ‘ (A20)

where

Ci=cos 0;,
Si=sin 6;,
C>3 =COs (02 - 93)
S>3 = sin (92 - 03)

Td1=Tey + L3CS2(my, — my)63 + LoL3(CaSsmy, — 8S,C3mz)6% (A21)
T2 = Tea + L3C3S3(my — my)0% + LaL3(S2Csmy, — CoS3m; )63 (A22)

APPENDIX 5: IMPEDANCE CONTROLLABLE SPACE

In experiment (2) of Section 4.2, because the actual inertia changes due to the end-
effector’s position, a large discrepancy can be created between the actual inertia and

[
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the virtual inertia. This can cause the actuator to exceed its output limits. It can
even cause oscillations which make it impossible for the manipulator to be
controlled according to the target impedance. Therefore, it is important to consider
the limits of possible target impedance for the manipulator.

Generally, for an m degree-of-freedom manipulator operating in an
n-dimensional space R, the following vector space is defined:

D ,
P=]:|,p,..., pm output for each actuator

Pm

and according to Appendix 2,

b1 S $1
i ’ Fl' = § ’ g‘ g
Jeun n

It

o=
®n
This being the case,

D1 < QI; eers Pm < Qm
g1, ---» @m : output limit for each actuator.

From equation (15) and this condition, 6, F;, and { are given certain restrictions.
Because the actual inertia is decided for the points in space R of the working space,
we can decide the impedance control possibilities for space @ including vector
spaces P, 0, F, ¢, and R:

Q=Q(P’¢,Fr,§"R)-

P

@, Fr, ¢

Figure A2. Impedance controllable space.
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We will call this the impedance controllable space. The impedance controllable
space {1 is shown conceptually in Fig. A2.

This is applied, for example, in the following way:

(1) The impedance controllable space  is determined based on the working
space R and the performance of the manipulator’s actuators. When the
manipulator operates along a particular trajectory of space R of the working space,
a check is made to determined whether the established target impedance
(6 (1), Fx(¢), { (1)) are included in space Q for each point trj(#) within that trajectory.
If some points are not included in space Q, either the trajectory or the target
impedance is modified.

(2) When we want to perform operations following a trajectory between the two
points trj(%) and trj(f.) in space R of the working space, if {i| P(¢)|d¢ for the
target impedance is minimized, the most energy-efficient trajectory can be
established.
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